00-patient-readmission-introduction
Introduction notebook, start here to implement your HLS Lakehouse.
01-Data-Ingestion
01.1-DLT-patient-readmission-SQL
SQL DLT pipeline to ingest patient data & build clean tables.
02-Data-Governance
02-Data-Governance-patient-readmission
Secure your tables, lineage, auditlog...
03-Data-Analysis-BI-Warehousing
03-Data-Analysis-BI-Warehousing-patient-readmission
Feature engineering for credit decisioning
04-Data-Science-ML
04.1-Feature-Engineering-patient-readmission
Prepare our features and labls
04.2-AutoML-patient-admission-risk
ML model training using AutoML
04.3-Batch-Scoring-patient-readmission
Batch scoring using the best model generated by AutoML
04.4-Model-Serving-patient-readmission
Create a real-time serving endpoint to enable live recommendation
04.5-Explainability-patient-readmission
Explain model outputs using Shapley values and personalize care
04.6-EXTRA-Feature-Store-ML-patient-readmission
Discover Databricks Feature Store benefits
05-Workflow-Orchestration
05-Workflow-Orchestration-patient-readmission
Orchestrate all tasks in a job and schedule your data/model refresh
config
Setup schema and database name.